3 research outputs found

    Quick look Atlantic Ocean rain maps for gale

    Get PDF
    A set of quick look maps of Atlantic Ocean rainfall were made. The maps are based entirely on information extracted from geostationary satellite images. The maps and the process by which they were made are briefly described. The major shortcomings of such a project are pointed out. For convenience the maps are presented in rectangular format. Each map covers one day. Rainfall is contoured in units of millimeters. Rainfall was estimated by the Arkin technique

    Application of lightning data to satellite-based rainfall estimation

    Get PDF
    Information on lightning may improve rain estimates made from infrared images of a geostationary satellite. We address this proposition through a case from the Cooperative Huntsville Meteorological Experiment (COHMEX). During the afternoon and evening of 13 July 1986 waves of showers and thunderstorms developed over and near the lower Tennessee River Valley. For the shower and thunderstorm region within 200 km of the National Weather Service radar at Nashville, Tennessee, we measure cold-cloud area in a sequence of GOES infrared images covering all but the end of the shower and thunderstorm period. From observations of the NASA/Marshall direction-finding network in this small domain, we also count cloud-to-ground lightning flashes and, from scans of the Nashville radar, we calculate volume rain flux. Using a modified version of the Williams and Houze scheme, over an area within roughly 240 km of the radar (the large domain), we identify and track cold cloud systems. For these systems, over the large domain, we measure area and count flashes; over the small domain, we calculate volume rain flux. For a temperature threshold of 235K, peak cloud area over the small domain lags both peak rain flux and peak flash count by about four hours. At a threshold of 226K, the lag is about two hours. Flashes and flux are matched in phase. Over the large domain, nine storm systems occur. These range in size from 300 to 60,000 km(exp 2); in lifetime, from about 2 1/2 h to 6 h or more. Storm system area lags volume rain flux and flash count; nevertheless, it is linked with these variables. In essential respects the associations were the same when clouds were defined by a threshold of 226K. Tentatively, we conclude that flash counts complement infrared images in providing significant additional information on rain flux

    Use of microwave satellite data to study variations in rainfall over the Indian Ocean

    Get PDF
    The University of Wisconsin Space Science and Engineering Center mapped rainfall over the Indian Ocean using a newly developed Scanning Multichannel Microwave Radiometer (SMMR) rain-retrieval algorithm. The short-range objective was to characterize the distribution and variability of Indian Ocean rainfall on seasonal and annual scales. In the long-range, the objective is to clarify differences between land and marine regimes of monsoon rain. Researchers developed a semi-empirical algorithm for retrieving Indian Ocean rainfall. Tools for this development have come from radiative transfer and cloud liquid water models. Where possible, ground truth information from available radars was used in development and testing. SMMR rainfalls were also compared with Indian Ocean gauge rainfalls. Final Indian Ocean maps were produced for months, seasons, and years and interpreted in terms of historical analysis over the sub-continent
    corecore